Multi-Task Learning Using Neighborhood Kernels

نویسندگان

  • Niloofar Yousefi
  • Cong Li
  • Mansooreh Mollaghasemi
  • Georgios C. Anagnostopoulos
  • Michael Georgiopoulos
چکیده

This paper introduces a new and effective algorithm for learning kernels in a Multi-Task Learning (MTL) setting. Although, we consider a MTL scenario here, our approach can be easily applied to standard single task learning, as well. As shown by our empirical results, our algorithm consistently outperforms the traditional kernel learning algorithms such as uniform combination solution, convex combinations of base kernels as well as some kernel alignment-based models, which have been proven to give promising results in the past. We present a Rademacher complexity bound based on which a new Multi-Task Multiple Kernel Learning (MT-MKL) model is derived. In particular, we propose a Support Vector Machine (SVM)-regularized model in which, for each task, an optimal kernel is learned based on a neighborhood-defining kernel that is not restricted to be Positive Semi-Definite (PSD). Comparative experimental results are showcased that underline the merits of our neighborhood-defining framework in both classification and regression problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Multi-Task Kernel Regression Algorithms

We study the stability properties of nonlinear multi-task regression in reproducing Hilbert spaces with operator-valued kernels. Such kernels, a.k.a. multi-task kernels, are appropriate for learning problems with nonscalar outputs like multi-task learning and structured output prediction. We show that multi-task kernel regression algorithms are uniformly stable in the general case of infinite-d...

متن کامل

Kernels for Multi--task Learning

This paper provides a foundation for multi–task learning using reproducing kernel Hilbert spaces of vector–valued functions. In this setting, the kernel is a matrix–valued function. Some explicit examples will be described which go beyond our earlier results in [7]. In particular, we characterize classes of matrix– valued kernels which are linear and are of the dot product or the translation in...

متن کامل

Learning Multiple Tasks with Kernel Methods

We study the problem of learning many related tasks simultaneously using kernel methods and regularization. The standard single-task kernel methods, such as support vector machines and regularization networks, are extended to the case of multi-task learning. Our analysis shows that the problem of estimating many task functions with regularization can be cast as a single task learning problem if...

متن کامل

The Multi-Task Learning View of Multimodal Data

We study the problem of learning from multiple views using kernel methods in a supervised setting. We approach this problem from a multi-task learning point of view and illustrate how to capture the interesting multimodal structure of the data using multi-task kernels. Our analysis shows that the multi-task perspective offers the flexibility to design more efficient multiple-source learning alg...

متن کامل

Multi-task and Lifelong Learning of Kernels

We consider a problem of learning kernels for use in SVM classification in the multi-task and lifelong scenarios and provide generalization bounds on the error of a large margin classifier. Our results show that, under mild conditions on the family of kernels used for learning, solving several related tasks simultaneously is beneficial over single task learning. In particular, as the number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1707.03426  شماره 

صفحات  -

تاریخ انتشار 2017